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Thy PVODE and IDA Algorit hiis* 

Alan C. Hindmarsh 

Preface 

In October-Soveniber 2000, I gave a series of talks, tlescribing in sonif' c k t , a i l  the algo- 
rithms in two general-piirpose solvers - -  

0 the PI'ODE sol\.r>r for systems of ordinary diffcrcmt,ial t)(l1liitio1is (ODES), i i I l ( l  

0 the ID-4 solver for systcms of differential-algebraic eqiiations (D.4Es). 

The material \vas orgariizcd into three parts: 

0 Part -4: Overvien- 

0 Part B: The PI'ODE Algorittini 

0 Part C: The ID.1 Algorit,hm 

This document consists of the viewgraphs for the corresponding three talks. 

Except for the correction of some minor errors, the talk viewgraphs are gix-cn here exactly 
as presented. Each of the three sets of pages is numbered independently, with page numbers 
starting at 1. 

Preceding the vien-graphs, on the next four pages is a brief outline of cwli of the talks, 
and a list of references. some of which are cited in the viewgraphs. 

Alan Hindmarsh 
Center for Applied Scient,ific Computing 

'This work was performed under the auspices of the U.S. Department of Energy by University of California 
Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48. 
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Part A. Overview 

1. ODE dy/dt = f (t,y) vs DAE F (t,y, dy/dt) = 0; DAE index 

2. BDF Methods 
a) Basic formulas 
b) Symbolic derivation: hD = log E 
c) Fixed-step vs fully variable-step vs fixed-leading-coefficient 
d) Example: 3 forms of BDF2 

3 .  Stiffness and absolute stability 
a) stiffness; example 
b) absolute stability; local linear approx.; dy/dt = lambda y 
c) abs. stability regions; A-stability, etc. 
d) BDF absolute stability regions 

4. Norms - weighted RMS via tolerances 

5. Errors 
a) Local Error vs Local Truncation Error vs Global Error 
b) LTE = C h"{q+l] yA((q+l)} + h.0.t. 
c )  Error estimation: 

prediction = order-q explicit analog; correction; 
E(h) = est. local error = C' (predictor - corrector) + h.o,t 

Set h' via ((E(h')(i = 1, E(h') = (h'/h)"{q+l) E(h) 
c) Error control: 

6. Solving the implicit system . 
G(y-n) = 0, G(y) = { y - ga'ma f(t-n,y) -- a-n [ PVODE ] 

Newton: M (delta y) = - G(y), 
{ F(t-n, Y, (Y - a-n)/gamma ) [IDA] 

M approximates G' (y) = { I - gamma J [PVODE] 
{ F-y + c FJ' [IDA] 

Newton-direct: dense or band treatment of M 
Newton-Krylov: GMRES with preconditioning 
Relaxation w.r.t. gamma 

ii 



Part B. The PVODE Algorithm 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1. Initial step size 
Estimate second derivative; do order 1 error control 

2. Storing the history - Nordsieck array = scaled derivatives 
Scaling; prediction via Pascal Triangle; 
Correcting the history array 

3. Interpolating to output times 

4. Newton iteration algorithm 
a) Modified vs Inexact Newton 
b) J / P  update strategies; Jacobian-saving 
c) Convergence test; rate estimate 

5. Local error test 

6. Step and order selection 
a) Order selection: E(h,k) = est. local error at order k; 

b) Heuristics 
set h' = h'(k) via I IE(h',k)l I = tolerance; find max h'(k) 

7 .  Adjustments on change of step or order 

1. 

2. 

3 .  

4 .  

5 .  

6 

7 

8 

Initial condition calcuiation 

Initial step size 
Do "order 0" error control 

Storing the history - modified divided differences 
Predicting; Correcting the history array 

Interpolating to output times 

Newton iteration algorithm 
a) Inexact Newton 
b) J/P update strategies 
c) Convergence test; rate estimate 

Local error test - on truncation and interpolation errors 

Order/step selection 
a) Order selection - Taylor series terms 
b) Step selection - via LTE 
c )  Heuristics 

Inequality constraints 
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The PVODE and IDA Algorithms 

Alan C. Hindmarsla 

Part A: Overview 

1. IVPS - ODES vs DAEs 

2. Backward Differentiation Foririulas 

3. Stiffness and absolute stability 

4. Norms - weighted RMS via tolerances 

5. Errors - local error; error control 

6. Solving the implicit system - Newton variants 
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1. Initial Value Problems 

ODE systems: 

Y = dYld t  = f ( t ,  Y) 7 y(t0) given, y E R" 

DAE systems: 

F ( t , Y , Y )  = 0 7 y( t0 )  and @(to) given 

Index of DAE systems: 

F ( t ,  y, @) = 0 is index-0 if aF/ay is nonsingular 
(can solve for e, in principle). 

with s (t7 u7 v, 11.1 F ( t ,  y,y) = 0 is index-1 if F = 

d f /au and dgldv both square and nonsingular 
(can solve g = 0 for u ,  substitute, solve f = O for U). 
(There are more general forms of index-1 systems.) 
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2. Backward Differentiation Formulas 

PVODE and IDA use BDF methods. With PVODE, user 
can select Adarns methods for nonstiff problems. 

Basic formulas. Discrete values are t n  and Yn E y ( t n ) .  

Step size is h = t n  - tn-1. 

Backward Euler (BE): yn  = Yn-1+ hzjn 

Fixed-step BDF of order q (BDFq): 

Coefficients ai, Po depend only on order q. 

One of many Linear Multistep Formulas (Methods). 

“BDF” because it differentiates y with backward values: 
e n  = (linear combination of Yn , Yn-1 , yn-2 , . . .) 

Interpretation for zj = f :  Solve for Yn in 

Interpretation for F ( t ,  y ,  zj) = 0:  Solve for Yn in 
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Symbolic operator derivation. 
For any sequence {xn}, define operators 

Exn z xn+l (increment) 
Ax, = xn+1 - xn (forward difference) 

Vxn = xn - xn-1 (backward difference) 
Also define 1 = identity operator. Note inverse and other 
relations, and develop an algebra of operators: 

E-lXn xn-1 I A = E - 1 ,  V = I - - E - ' .  
A sequence may or may not be the set of discrete values 
of a smooth function of t .  When it is, we can define a 
differentiation operator, D f n  = . f ( tn).  
Infinite Taylor series for f: 

Now from 1 - V = E-', get E = (1 - V)-', 
1 1 

hD = log(E) = log[l/(l - V)] = V + LO2 + '03 + . . . 
2 3 

Applied to y ( t ) :  
1 1 

3 hyn =z V y n  + T V 2 y n  + - v 3 y n  + . . .  

For BDFq, truncate this series at Vq term. 
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How to  vary the stepsizes? Three ways: 

(1) Use fixed-step BDF but interpolate at a spacing equal 
to the new stepsize h'. 

[This is the method in LSODE and its variants.] 
Behavior can he unstable if step changes are frequent. 

(2) Use fully variable-step form of BDF: 
4 

i=l 
Yn  an,iYn-i + JLnP,,OYn 

I 
1 

I 1 4 k?!- L - L  ' 4l-, ' hrl 

Coefficients a n , i ,  pn,o depend on stepsizes h, = t n  - tn.-1; 

hrl--1) - .  , hn-q+l. If h = max{hn,.  . . , hn--q+l } , then the 
coefficients are uniquely determined by: 

[This is the method in EPISODE and its variants.] 
Disadvantage: variation of hn/?n,O makes Newton matrix 
hard to  keep current. 
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(3) Use "fixed-leading coefficient" form of BDF. 
A compromise. The choice in PVODE and IDA. 

but at the cost of an extra term Pn,lon-1: 

Formula has fixed-step value of Pn,O = Po = 1/(d&1j --1 ) 

a 

Coefficient Pn > 1 vanishes when stepsizes are equal. 

Coefficients are defined via interpolating polynomials: 
Given Yn-1, 

rnial wP(t) ,  of degree - < q, by 
7 Yn-ql Yn-1, define the predictor polyno- 

wP(tn- j )  yn-j ( j  1 . .  - 4) 7 LjP(tn-1) yn-1 . 

Corrector polynomial w"(t)  is defined in terms of wP(t) 
and the unknown value yn by: 

More constructively, get predicted values yn(o> = wP(tn) 
and jln(o) = WP(tn) ,  and then build w"(t)  as 

w"( t )  = U P @ )  + c ( t ) ( y n  - yn(0)) where 

C(tn - h n )  . . C(tn - q h n )  = 0 C(tn)  = 1 . 
Then the BDF is 
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4 1 

(2) Variable-step: 
With = hnIhn-1, 

1 2 Yn 2 p +  1 [ (P  + I )2Yn-l  - p yn-2 + ( p  + l)hnzjn] 

(3) Fixed-leading-coefficient : 
With p hnIhn-1, 
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3. Stiffness and Absolute Stability 

Stiffness . 
Characterized by presence of a strongly damped mode. 
In a linear approximation, there is a mode ext with 
Re(X) << 0, such that the corresponding time constan 
r = -l/Re(A) is << the t scale of interest in solution. 
Problem is not (yet) stiff if y ( t )  is changing on scale of r. 

Simple example: 

= 2t  + 10'((t2 - y> , t E [o, 11 , y(0) given . 

Here y = t2 + yOc-'//' 7 T = 10- '. Beyond t = 107 
(say), solution time scale is - 1. But damped mode wit21 
time constant r is still present, so problem is stiff there. 
Stepsizes - r if the wrong method is used. 

Graphically: Among all the particular solutions, a few 
are smooth (in quasi-equilibrium), but most are strongly 
damped toward a smooth solution. In contrast, the solu- 
tions for a nonstiff uroblem are more nearly parallel. 
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Absolute Stability (for ODES). 
Look at how a perturbation in initial conditions generates 
a perturbation in the solution: y ( t )  + y ( t )  + w ( t ) .  
For I j  = f ( t ,  Y ) ,  get 

W = f ( t ,  y + w) - f ( t ,  y) z J ( t ) w ( t )  , where 

In a local linear approximation, look at simply W = Jw 
with J constant. 

Diagonalize J .  Some nonsingular matrix transforms J 
into a diagonal matrix with eigenvalues A. 

The true solution of W = Jw is a linear combination of 
exponent ials ext . 

Using linearity of the BDF, the BDF solution is the same 
linear cornbination of the BDF solutions of zj = Xy. 

Define the Absolute Stability Region of any ODE method 
as the set of hX for which the method is stable, i.e. 
damped, for I j  = Xy at stepsize h. 

So you can judge the stability of any given method on 
a given class of problems simply from the Absolute Sta- 
bility Region of the method combined with the spectral 
properties of the problems. 
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Method is “A-Stable” if A.S.R. includes the left half-plane 
{ R e ( x )  < O}; i.e. whenever the ODE = Xy is stable, 
so is its numerical solution. 
True for BDFl = BE and BDF2. Dahlquist proved there 
is no A-stable Linear Multistep Method of order > 3. - 

All the BDFs up to  order 6 are (‘A(a)-Stable’’: A.S.R. 
includes a sector -a < arg(-hll) < a for some a < n/2. 

includes a half-plane left of some d < 0, and method is 
accurate in an adjoining rectangle centered at the origin. 

10 



BDF Absolute Stability Regions: 

Method is stable outside the closed curve shown. 

BDFl = BE: 
BDF2 is also A-stable 

{ IhA - 1) > 1) (A-stable) 

Order 6 is close to failing to  be A(a)-Stable or stiffly 
stable, so is excluded in the BDF solvers. 
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4. Norms 

The user must supply tolerances, 

rtol = relative tolerance (scalar) 

atol = absolute tolerance (scalar or vector) 

These define weights for the solution vector y: 

wz = rtol IyzJ + atol' (i = I . .  . Nj 

To control errors in 92 relative to wz, use a weighted norrn. 

To eliminate bias when expanding problem size (as in 
mesh refinement), we use a root-mean-square norrn. 

So all error/convergence tests use a Weighted RMS norrn 

on any error vector v.  

Roughly (ignoring effects of RMS), ll'uJ( < 1 means that 

lvzl < wz for ,211 i 

and roughly that 

either Ivil/JIJil < rtol or Ivz) < atolz 

So a unit vector in this norm is really a small vector. 
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5 .  Errors 

Local errors. 

Local Error = error committed on one step, taken with 
exact solution values for past values. 

Local Truncation Error = residual of the Linear Multistep 
Formula when an exact solution is inserted. (Depends on 
how one normalizes the LMF.) 

LE and LTE are different, but close. Both are O(h"') 
for a method of order q. With suitable normalization, 
LE = LTE +O(hq+'). 

Global Error = error in yn (after n steps) from exact 
initial value yo, reflecting cumulative effect of local errors. 
Convergence theorems show Global Error = O( hq), under 
suitable conditions. 

For any LMF, LTE = Cnh'+ly('+l)(tn) + O(h'+"), where 
C n  is a' computable function of q and (in variable-step 
cases) of the past q stepsizes h,. 
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Error estimation. 

Predict yn as Yn(O) = W P ( t n ) ,  the explicit analog of BDF: 

Similar asymptotic analysis of yn - yn(0) gives 

Yn - Pn(0) - - C n h4fly("+')(tn) + O(h  4+2 ) 

for another known constant Cn. 
So within O(hq-+2), 

(LTE in yn)  - - C n h,V+ly(V+l)(tn) 

So we define the Estimated Local Truncation Error as 
ELTE Ck(Yn  - Yn(0) ) )  with C ,  = CnICn. 
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Error control. 

Given E(h)  = ELTE for the tentative step taken at order 
q and stepsize h, we accept the step if llE(h)(l < 1, and 
redo the step otherwise. 

In either case, we want a new stepsize h’ for which the 
current or next step will succeed. 

Asymptotic formulas imply E( h’) ==: ( h’/h)q+lE( h), 
ignoring variation in Cn. 

With this approximation, the value of h’ that makes 
IIE(h’)lI = 1 is given by 

Ih’/hl“+’l/E(h)(l = 1 

or 
l / ( q + l )  h’ = h/IIE(h)lI 

We insert a heuristic factor < 1 into this formula to  
compensate for estimation errors etc. 

Order selection. 

Under certain conditions, we choose a new order q‘ as well 
as a new step size. This is based on similar ideas, is done 
quite differently for PVODE and IDA. 
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6. Solving the Implicit System 

Nonlinear system. 

At every step, a nonlinear system G(yn) = 0 must be 
solved for the new vector yn. 

Write the BDF as y, = a, + y&, y = - h&. Then 

Newton iteration. 

The initial guess is the predictor value yn(o). 

The iteration is M[yn(nL+ll - y,(,,,] = -G(’n(ml) 
with Newton matrix M z G’(y) at some nearby value y. 

For PVODE: G’(y) = I - y J  , J aflay. 

Newton-Direct solution: 
Dense or band LU factorization of M ;  backsolve Mx = b. 

Newton-Krylov solution: 
Solve Mx = b by preconditioned GMRES. 
Precondition on left or right in PVODE, left only in IDA. 
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Linear systlern relaxation (Nev-ton-dir. t.:t case). 

Newton matrix used is either 

AZ! = I - Y J  or M = d F / d g  t (l/y)dF/dy 
with 3~ = the value of hPo when M was last evaluated. 
Even if the rest of AZ has not changed, 7 f y can degrade 
convergence. 

We help by doing relaxation: use Ay = - C A P ( =  instead 
of Ay = -G-'G, with scalar e. What e? 

Consider a linear ODE system, e = J y  ( F  = zj - Jy) 
with J constant. Then either 

G ' = M = I - y J ,  M = I - y J  or 

In either case, the error at each iteration is reduced by 
the error matrix E = I - cM-'M, and convergence rat'e 
is the spectral radius p(E).  

G' = ?-'I - J , = ?-'I - J . 

Observe that for A = an eigenvalue of J ,  the correspond- 
ing eigenvalue of E is 

€ = l - C (  1 - yx ) y-l - x 
1 - yx 

We expect Re(X) < 0 but otherwise S p ( J )  is unknown. 
Choosing c to minimize rnax{ 161 : Re@) < 0} leads to 

2 2 
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Shorthand notation for the step algorit'hm: 

P = prediction 

E = evaluation of f or F 

C = correction 

Each step is: P (E C)m.  

Stopping test. 

Basis for error control is valid only if yn is a,n accurate 
solution of the implicit equation. So stopping test must 
(try to) insure that iteration error in final yn(m) has a 
relatively small effect on the local error test quantity. 
1.e. tolerances for Newton stopping and for local error are 
strongly related. 

Test is On ll!ln(m+1) - !ln(m)II, not On IIG(!ln(rn+l))ll. 
(No final E.) Reasons: 
(a) G magnifies the error in stiff ODE case; 
(b) IlGll is nonsense in DAE case; weights not valid. 
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The PVODE and IDA Algorithms 

Alan C. Hindrnarsh 

Part B: PVODE 

1. Initial step size 

2. Storing the history - Nordsieck array 

3. Interpolating to output times 

4. Newton iteration algorithm 

5. Local error test 

6. Step and order selection 

7. Adjustments on change of step or order 

8. Example PVODE run 
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0. Introduction 

PVODE solves the initial value problem 

Methods available are: 

variable-order (1-12) variable-step Adams-Moulton, 

var.-order (1-5) var.-step (fixed-leading-coeff.) BDF 

For stiff problems, use BDF. 

Discrete values are t n  and Yn E y ( t n ) ,  with step sizes 
hn t n  - tn-1. 

In terms of predicted values Yn(o> and zjn(0),  the BDF of 
order q has the form 

Yn - Y ~ ( o >  = hnPO(Yn - en(,)) 7 

where Po = I / ( C ~ = ~  1/j). 

Desirable absolute stability properties of BDF methods 
for stiff problems comes from single (implicit) 7J term in 
linear multistep formula Yn = Z ~ = I  ajyn-3 + hPo3/n 

Where the algorithm is method-specific, only the BDF 
methods are covered here. 
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1. The Initial Step Size 

First step will be with BDFl = Backward Euler. 
For this step, LTE= ?h 1 2  j j ( t 0 )  + O(h3).  
We want an h that roughly solves 

lh1211ij(to)11/2 = 

I LTE 

1 .  

Must estimate i j o  = $ ( t o ) ,  knowing yo, zjo = f(to,yo).  

For a given guess h, estimate 

?Jo 

Now iterate. 

To get started, use bounds for (hl based on initial time to 

[f(to + 6, Yo + hyo) - zjO]/h - 

and first requested output time tout. 

Lower hound is 

h L  = 100 (unit roundoff) - max 

Upper bound is hu = O.llto,t - tol, 
downward to ensure that 

possibly adjusted 

Start iteration with h = d m  sign(t,,,t - t o ) .  
Stop when l / 2  < h /h  < 2 (good enough, since the error 
control in first step may reset h) .  
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2. The Nordsieck History Array 

1 1  
1 2  1 
1 3 3  1 
1 4 6  4 1  

Recall: Data {Qn, y n ,  Yn-1, - , Yn--q+l } defines a unique 
polynomial wg(t )  of degree < - q [earlier denoted ~ " ( t ) ] .  

The Nordsieck array is defined as the N x ( q  + 1) array 
of scaled derivatives of w = w; at t,: 

where h = current (tentative) step size. 

Prediction of x, from ~ ~ - 1 :  

Xn(0) = X n d q  7 A, = order ( q  + 1) Pascal Triangle. 

Done in place with repeated additions, not multiplies: 

for = ~ . . q  {for j = q...r"~ 1xj-l -+ xj-' + XJ'  } 7 

where 2.7 = column j of x,-1 ( j  = O...q). 
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Correcting the history array. 

The array x,(~) represents predictor polynomial L& ( t )  
via scaled derivatives at t ,  with step size h = h,. 

After computing and accepting Y n ,  in order to start the 
next step, we must represent wE(t),  which interpolates 
the data set Ij,, g n , .  . . , ~ , + 1 - ~ .  We do this by looking at 
A(t) @(t) - WE-&) ,  then adjusting the columns of 
xn(o) by the scaled derivatives ( /J / j !>M)( t , , ) .  

Recall that the BDF is 

h(Gn - Yn(0) )  - Q O ( Y ~  - Yn(0) )  7 

where -a0 = Cy=l l /j .  (The reason for this notation is 
that the BDF is often written in the alternate form 

From the various interpolation conditions, 

n ( t n )  = Yn - Ijn(0) = ( - a o / h ) A n  

From its zeros and values at t,, we can write 
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for some scalar p. We have 

So (0- + hp)A, = -a& implies p = -(a + ao)/h. 

Define dimensionless quantities 

and 

At the same time, it helps to change from t to the dimen- 
sionless variable t - t n  

h X -  

Then 

and 1 + (t  - t ,)p = 1 +XI(*. 



We get 

where A ( x )  is the scalar polynomial 
n(t) = A(x )An  7 

Now the scaled derivatives of A(t) at t n  are just the 
Taylor coefficients of A(x )An  at x = 0: 

We can find the coefficients ! j  of this polynomial easily. 

tory array is sirnply 

Denoting x,, = [zn, 0 1  xn, . . . xi], the correction to  the his- 
7 

Note that 
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3. Interpolating to Output Times 

Suppose the user requests the solution at t = tout, which 

As the computed approximation to Y ( t O u t ) ,  we return to  
the user 

was just reached: tn-1 < tout 5 t n  or tn-1 > tout - t n .  

Yout = w(t0ut) 

using w = W E .  
As given by Taylor series based at t n ,  

Given the Nordsieck array xn,  with columns x', 

We also provide, on request, solution derivatives 

In particular, this gives y(tout) cheaply and accurately. 
Evaluating f (tout, Yout ) is probably more expensive, and 
stiffness makes it less accurate. 
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4. The Newton Iteration Algorithm 

Recall we arc solving G(y,) = 0 for gn. where 
G(Y) = Y - rf (tm Y! - a,  and y hPo = h/&. 

Newton iteration is MAy = -G(zJ+-& n-here M is 
some approximation to G'(y) = I - y J  arid J df/ay. 

PVODE (together with its serial t w h  CVODE) does two 
flavors of Newton iteration: 

(a) Modified Newton in direct cascs: 
M fixed (usually out of date); 
linear residual z 0 via LU niethod; 
relaxation w.r.t. 7 f y in M .  

(b) Inexact Newton in Krylov case: 
M current, using matrix-free product Jv; 
precondition (left or right) with P = M ;  
linear residual nonzero but controlled. 

In any case, the initial guess is 

Yn(0) = w:-l(tn) = Kh"l 0 of X,(O) 7 

where L & ~  represents the data at end of step n - 1. 

If a re-evaluation of M or P is done during step n, it is 
done at (tn, ZJ,(~)), to maximize its effectiveness. 
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Jacobian/Preconditioner strategies. 

The Newton matrix M = I - rJ (direct cases) and pre- 
conditioner P ==: M (Krylov case) are usually expensive. 
Balance between evaluationlpreprocessing the matrix fre- 
quently (high cost) and infrequently (slow convergence). 

We update M or P if: 
* starting the problem (n = 1) 

* > 20 steps have been taken since last update 

* just had a non-fatal convergence failure on this step 

* just had an error test failure on this step 

On an update of M or P,  we rnay re-evaluate J (direct 
cases) or instruct user to  re-evaluate Jacobian data in P 
(Krylov case). Or we rnay use a saved copy of J for M ,  
or instruct user to use saved Jacobian data to form P.  
On an update of M or P ,  we also re-evaluate if: 

* starting the problem 

* > 50 steps have been taken since the last evaluation 

* just had conv. failure with J old and IT/? - 11 < .2 

* just had a convergence failure forcing h reduction 
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Convergence test. 

The final computed value yn will have to satisfy a local 
error test IIYn - Yn(0) 1 )  < - € L E .  We want to insure that the 
iteration error yn - z ~ ~ ( ~ )  is small relative to  €LE:  

IJiteration error in I J ~ ( ~ ) I I  < O.IELE . 

For this, estimate linear convergence rate constant R: 
We initialize R to 1; reset R = 1 when M or P is updated. 
After computing a correction 6, = Y , , ( ~ )  - Yn(m-1) 7 we 
update R if m > 1 as 

Now 

So the convergence test is 

If convergence is superlinear (possible in Newton-Krylov 
case), then the error in yn(m) is even smaller. 

We allow at most 3 Newton iterations, and declare the 
iteration diverged if any ~ ~ 6 , ~ ~ / ~ ~ 6 m - ~ ~ /  > 2. 

If convergence fails with J or P current, cut h t- h/4. 
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5 .  Local Error Test 

For BDFq, at current step size h = hn, 
Local Truncation Error = Ch 4+1 y (g+ l )  ( t n )  + O(h  4+2 ) 

for some C ,  where the ratios hj/h are assumed bounded 
(above and away from zero). To express C ,  recall 

4 
[ j  = ( t n  - tn-j)/h 7 - c l / j  7 

j=1 

and also define 

Then 

There is a similar asyrnpotic formula for the LTE of the 
predictor formula for yn(o),  with coefficient 

For derivation, see Jackson & Sacks-Davis [lo]. 
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The local error test is: 

()estimated LTEJI - < 1 , or 
f -  IlnnII = lI?/n - Yn(0)II 5 l / lC I = € L E .  

If test passes, go on to  correction x, ,(~) += x, 

If test fails, 

(a) restore xn-l from xn(o) by repeated subtra 

(b) reset step size to h’ = solution of 

(h’/h) q f l  I /  nll = % E / 6  

ti ns 

(1/6 = safety factor, to account for deviations from 
asyrnpt otic behavior) 

(d) retry the step (predict, correct, etc.) 

If error test fails repeatedly (7 times) or (hi reaches a 
user-supplied minimum, give up. 

After 3 error test failures, we force an order reduction if 
q > 1, or restart from scratch if q = 1. 

The ratio h’/h is limited (above) to .2 after 2 error test 
failures, and to  .1 after 3 failures. 
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6. Step and Order Selection 

Basic idea: Pick the order such that the polynomial of 
that degree best fits the discrete data on the given t mesh. 

First rule: Keep the current q and h if the current step 
had either a convergence failure or an error test failure. 

Step selection at current order. 

Since the error test (IAnII - < € L E  passed, 
qs-1 (h’lh) II nII = € L E  

may define a larger step size. With safety factor, use 

as the tentative step size ratio at order q. 

Order selection timing. 

We consider a change of order only after taking q+ 1 steps 
at order q: a heuristic with partial theoretical support. 
In that case, consider orders q’ = q - 1 (if q > 1) and 
+ q + 1  ( i f q < 5 ) .  

In a future version of PVODE: Following any step with 
4 -  > 3, force a reduction to order q - 1 if h is limited by 
the boundary of the Absolute Stability Region. 
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Consider order q - 1. 

The Local Truncation Error at order q’ = q - 1 is 

LTEq-l Cq-lh 9 ( q )  ( tn) +O(h q+l ) . 

By a derivation similar to  that for the order q error test, 

Here h41J(q)(tn) is easily estimated as q!xz. So 
est.LTEq-l = Cq-lq.xn 1 4  . 

We set a tentative new step size as before: 

(h’/h)qlI/est.LTEq-ll/ = 1/6 , or 

Consider order q + 1. 

The Local Truncation Error at order q’ = 4 + 1 is 
q+3 ( t n )  + O(h ) 7 

LTEq+l- - C q+l /p+”Y(q++2) 



(We saved An-1 and Cn-1 at end of step n - 1 if the 
waiting period was about to end.) 
Insert into LTE equation to get est.LTEq+l. 
Use a smaller safety factor = 1/10 for tentative h': 

= 37q+l - 1 0 I 1 est . LT E,, 1 1 1 I&- h'lh = [ 
Order selection. 

We want the next step size to be as large as possible: 

37 = max{37q-1, Vq,  37q+l} 

Set q' = q or q Zt 1 accordingly, and h' = qh. 

Two final rules: 
Don't bother changing q or h if q < 1.5. 
Limit h'/h to lo4 on step 1, and to 10 otherwise. 
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7. Adjustments on Change of Step or Order 

Changes to  h, q,  and x, decided on at end of step n are 
made at start of step n + 1, in order not interfere with 
calculation of interpolated output values. 

Actions when q’ f q: 

Adjust x, to  reflect new set of interpolated data. 

Additional act4ions whenever h’ # h: 

Rescale the 2; by rf’ ( j  = L q ) ,  set h = h’, q = q’. 

Adjustment for q’ = q - 1 

Array x, represents w(t) = uK(t), of degree q ,  which 
interpolates Qn7 yn7 ~ ~ - 1 ,  . . . 7 Yn-q+1- 

We need an array .s;, representing w(t), of degree q - 1, 
which interpolates e,, y,, y,-~,  - .  . 7 Y n - q - t ~  

As before, do this by determining the difference poly- 
nomial, A(t )  = w ( t )  - w(t) (of degree q ) .  We have 

A(t,) A(t,-i).  . . A(t,-q+a ) = O = A(tn) 
and the coefficient of tq in A(t )  is the same as for u(t), 
namely y F ) / q !  = zq/hq. n This implies 

17 



In terms of x = (t  - tn)/h and t j  = ( tn  - tn-j)/h, 

We compute the coefficients d j  of d(x) = x~II:-~(& +x), 
then adjust x, (in place) by 

Adjustment for q' = q + 1. 

We need ann array x,, representing 

Determine A = LJ - w (of degree q + 1). We have 

( t )  , of degree q + 1, 
which interpolates I&, yn ,  Yn-1, . . . 7 Yn-q- 

A(tn) A(tn-1). . = A(tn-q+l ) O = A(tn) 
and A(tn-q) yn-q - W ( t n - q )  An-q. Therefore 

Setting t = t ,  + hx, we have 
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Now recall the polynomial A(t) = wE(t) - uE-l(t) we 
constructed to  correct xn(o> to  2,. We have 

Substituting, we get 

We compute the coefficients d j  of the polynomial d ( x ) ,  
compute the constant d, and then adjust x, by 

Here x:+' = 0, so this creates a new column q + 1 for the 
history array. 

Reference: Brown notes [a] 



8. Example PVODE Run 

Ozone model: two-species reaction-advection-diffusion in 
2D with diurnal kinetics; time span = 24 hours. 
(See PVODE User Document [6]). 

Solution uses BDF + GMRES + left preconditioning; 
P is block-diagonal with 2x2 blocks (no spatial coupling). 

Rough history of order q and step size h: 

t :  0 ........ 0.04s ....... 0.3s ......... (11-56s) ... 12.4h ... 24h 

q: 1 .... 2 ... 3 ... 4 ... 5 ... 4 ... 3 ... 2 .. (3-5) .. 5 ..... 5 

h: 0.4rris ... 7rns ..... 0.03s .......... (2-131s) .... (6- 14rnin) 

Total time steps NST = 467 

Total nonlinear iters. NNI 586. Average = 1.255/step 

Total linear iters. NLI = 588. Average = 1.003/Newton 

Total P setups NSETUPS = 72. Average = 6.5 steps/setup 

Total P evaluations NPE = 8. Average = 58.4 steps/eval. 

Total error test failures = 23 

Total Newton convergence failures = 0 

Total Krylov convergence failures = 0 
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0. Introduction 

IDA[ACH,Taylor] evolved from 
DASPK [Brown, ACH, Petzold], a variant of 

DASSL [Petzold]. 

Change of notation: F(t, y, y’) = 0 , y’ e dy/dt , 
y E RN. 

Discrete values are t, and yn E y(tn),  with step sizes 
h, = t, - t,-1. 

In terms of predicted values y,(o) and yk(o), the fixed- 
leading-coeficient BDF of order k has the form 

where 
k . 1  

a, e - E T .  

Order k varies between 1 and 5. 
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1. Initial Condition Calculation 

For the DAE system F ( t , y , y ' )  = 0, the user is to  
supply to and initial condition vectors yo and y;. But it 
rnay be difficult or impossible to supply these consistent 
with the DAE system. 

Problem 1. Suppose F = 0 corresponds to  an ODE sys- 
tem with constraints, also called a "semi-explicit index-1'' 
system: 

U' = f ( t , u , v )  , g(t ,u ,v)  = O (dgldv nonsingular) . 

User may know uo = u(to), but not have a consistent 'uo. 

Problem 2. For general F ,  suppose y; is given but yo 
is unknown, and d F l d y  is nonsingular. 

In both cases, IDA can help the user out. 

Initialization Problem 1. 

Allowing u' to be implicit, take the more general form: 

with aflau' and dgldv both square and nonsingular. 
IDA actually accepts a more general class of problems: 
the differential components u and algebraic components 
v can be permuted, and the constraints rnay be implicit. 



Because we also need ub to start the integration, define 

Then we want to solve 4 ( x )  = 0 for x. The Jacobian, 

is nonsingular (subscripts denote differentiation). 

We want to do Newton iteration, but do not want to  set 
up any new machinery, beyond what is involved for the 
integration of the DAE system. The integration involves 
solving Newton correction systems J A Y  = - F ,  with 

J = dF/dy  + adF/dy’ , a = -a&?. 
The user is either supplying J or letting IDA generate J 
by difference quotients (direct cases), or is supplying and 
solving a preconditioner P F=: J (Krylov case). 

For the case of Problem 1, 

Now we play a trick. Artificially set h, and a = l / h ,  
and approximate @(x) with a scaled form of J :  Let 

Note that as h -+ 0, J -+ 4’. 
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Given that we can realize the operator J-' ,  we can 

We must pick h small enough to make J ==: 4' but not so 
small that J is too badly conditioned. 

realize JP1 = S- 1 J -1 , an approximate inverse of 4'. 

The basic IC Calculation algorithm: 

1. Pick an appropriate small hi set a = l / h .  

2. Form J ,  or have user set up preconditioner P.  

[:I* 3. Set r = -F(to, yo, yh) at current guess x = 

4. Solve J p  = r by direct or precond. Krylov solve. 

5. Set Ax = S-'p (= J-'r) and x +- x + AX. 

6. Loop to Step 3 until llpll small. 

7. If converging slowly, update J or P arid continue 
from Step 3 with current x. 

8. If diverging, reduce h and restart with original x. 

Impact on user: must input integer vector ID identifying 
differential components u and algebraic components a. 

Extends to index-0 case: solve F(t0, y0,y;) = 0 for yb 
(no 'u or g). But the convergence test on (1pl1 must be 
resealed to  remove its artificial near-proportionality to  h. 



Initialization Problem 2. 

Here we simply want to solve 4(yo) f F(to, yo, j$) = 0. 

The Jacobian 4’ = Fy is simply the value of the system 
Jacobian J with a = 0. So we use the same algorithm as 
in Problem I ,  but pass a = 0 at each point where J or 
P is evaluated and preprocessed (no h, hence no Step 8). 

In both cases, the actual algorithm is more complicated. 
See [5]. The main complication is a linesearch backtrack- 
ing algorithm to improve global convergence. It guar- 
antees a reduction of / 1 $ 1 1 2  at each Newton step, 11-ith 
relaxation: x + x + XAx. 



2. The Initial Step Size 

PVODE uses an algorithm based on the Local Trunca- 
tion Error of the order l method: estimate y: and solve 
h211y:11/2 for h. 

This is not feasible in IDA; F = 0 provides no way to  
get y” analogous to  PVODE’s differencing of y’ = f. 

IDA resorts to using the LTE of the “order 0” method, 
yn+l = yn. For the order 0 step y1 = yo, the leading term 
of the LTE is hyb, and we have y;. So as the tentative 
value of h take the solution of 1lhy;Il = 1. 

Adjustments to this choice: 
add a safety factor; 
restrict to a fraction of first output interval Itout - tal; 
attach the proper sign. 

The result is: 



3. Storing the History 

Classical divided differences of { yn}:  

For a smooth y ( t ) ,  

Modified divided differences: 

First define the t differences ( j  = 1, .  . . 7 k )  

For j = 0 , .  . . , k ,  the modified divided differences are: 

Exception at n = 0: 

as if a BDFl step were taken from y-1 to yo with ho = hl. 
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We will also need some other scalars: 

Interpolating polynomial. 
Given Ynl Yn-1, .  - . I  Yn-k, there is an interpolating poly- 
nornial w n ( t )  of degree < - k that interpolates this data 
set. In terms of classical divided differences, this is 

F o r j = O ,  . . .  I I C ,  the j - t h  term above is 





4. Interpolating to Output Times 

Suppose the user requests the solution at t = tout, which 
was just reached: tn-1 < tout 5 t ,  or t,-l > tout - > t,. 
IDA returns to  the user two vectors 

Yout = w(t0ut) 7 
f 

Yout - = W1@out) , 
where w ( t )  = W n ( t > .  

Use the +j(n) and $j(n) to compute 

The interpolant is continuous, but not C'. 

Implementation: 
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5 .  The Newton Iteration Algorithm 

Newton iteration is J A Y  = -G(yn(m)),  where J is some 
approximation to G’(y) = d F / d y  + adF/dy’.  

IDA does two flavors of Newton iteration: 

(a) Modified Newton in direct cases: 
J fixed (usually out of date); 
linear residual ==: 0 via LU method; 
relaxation w.r.t. fi f a in J .  

(b) Inexact Newton in Krylov case: 
J current, using matrix-free product Jv; 
precondition on left* with P ==: J ;  
linear residual nonzero but controlled. 

*Note: Left preconditioning is required to make norm 
1 I linear residual 1 1  meaningful; 1 1  J A  y + G 1 1  is meaningless 
in general, since the weights are weights for y .  

In any case, the initial guess is yn(0) = Wn- l ( tn ) ,  where 
w,-1 represents the data at end of step n - 1. 

If a re-evaluation of J or P is done during step n, it is 
done at (G27 Yn(0)l Yn(0) I ), to maximize its effectiveness. 
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Jacobian/ Precondit ioner st rat egies. 

The Newton matrix J (direct cases) and preconditioner 
P F=: J (Krylov case) are usually expensive. 
Balance between evaluation/preprocessing the matrix fre- 
quently (high cost) and infrequently (slow convergence). 

We update J or P if: 
* starting the problem (n  = 1) 

' convergence failed non-fatally with old J or P 

On an update of J or P ,  Jacobian data is always re- 
evaluated from scratch. Two-level update strategy of' 
PVODE would require saving both d F / d y  and dF/dy ' .  
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Convergence test. 

We want to insure that the iteration error yn - yn(m) is 
small relative to y itself, specifically: 

lliteration error in Z J ~ ( ~ ) ( I  < 0.33 . 

(Contrast PVODE's nonlinear test constant, which is pro- 
portional to  the local error test constant.) 

For this, estimate linear convergence rate constant R: 
Corrections are dm = Yr,q(m> - Yn(m-1) for m = 1 , 2 , .  . . 
If rn > 1, we set 

1 
R = ( l l ~ m l l / l l ~ l l l ) s  * 

We stop the Newton iteration if R > 0.9. 

Now Suppose R satisfies l l&+I 
Then 

k2 + . . . implies 

So when rn > 1 and R - < 0.9, we set S = R/(1 - 
Then for any rn, the convergence test is 

but for m = 1 this uses an old value for S. 
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If convergence is superlinear (possible in Newton-Krylov 
case), then the error in yn(m) is even smaller. 

We initialize S to 20, reset S = 20 each time J or P is 
updated, and reset S = 100 on a step with a f G.  This 
encourages recalculation of R on a major change in the 
Newton matrix. 

If m = 1, we make an additional test, and stop the New- 
ton iteration if I1611I < * 0.33, because such a 61 is 
probably just noise and so not appropriate for use in R. 

We allow at most 4 Newton iterations. 

If convergence fails with J or P current, cut h t- h/4. 

If convergence fails 10 times, give up 

Krylov convergence test. 
We control the preconditioned linear residual to be small 
compared to the allowed error in the Newton iteration: 

IlP-'(Jx + G)I( < 0.05 0.33 . 

(Because the generic SPGMR solver uses Lz norms of 
scaled vectors, it is given a tolerance of 0.05 0.33 
in order to obtain a WRMS-norm test.) 
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6. The Local Error Test 

The BDF can be written in the alternate form, expressing 
hnyn as a series in the q$: I 

where 
k 

j=1 
0 a (n) = - c q ( n )  . 

The true solution y ( t )  (if sufficiently smooth) satisfies 

in which the q$ are evaluated on the solution y ( t ) .  
In this series, $j(n) is O(hj)  as the stepsizes all go to 
zero, hounded by h. 

The Local Truncation Error of the BDF is the remainder 
in the formula when evaluated on a smooth solution. 
So the LTE is 

This has been shown to he asymptotically correct for fixed 
stepsizes and for somewhat more general conditions. 

Using the interpolatory conditions of the predictor and 
corrector polynomials, one can also show that 



Thus the estimated LTE is 

IDA requires that llELTE,II - < 1. But it also requires 
that the interpolation error in u,(t) is bounded by 1 in 
WRMS-norm for t in the last step interval [tn+ t,,]. The 
principal term of this interpolation error can be bounded 
bY 

wk+l(n) llh+l(4 I1 * 

So the Local Error Test in IDA is: 

[ Note that this coefficient involves h,, h,,-l, . . . , h,,-k. 

1.e. BDFk is treated as a ( k  + 1)-step method. 
BDFl = Backward Euler is treated as a 2-step method.] 

Optional altered Local Error Test: If y has algebraic com- 
ponents v that are coupled to the ot,her components u, 
it is sometimes best to  control the local error only in u. 
The ODE-based LTE theory is less likely to  apply to 'u. 

For this option, use must input bit vector ID identifying 
u vs 'u. IDA then forms a masked copy of the reciprocal 
weight vector w-l for use in the Local Error Test. 
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7. Step and Order Selection 

Special initial phase: For the first few steps, until 
* the local error test fails, or 
* the order is reduced, or 
* k = 5 (the maximum order), 

we raise the order by 1 and double the step size. 

IDA’S step/order selection uses Local Truncation Error 
estimates that apply in the fixed-step case, even though 
the last k + 1 step sizes may not have been constant. 

At fixed h, the leading term of the LTE at order k is 

1 hk+l y ik+l )  
k + l  

To estimate this, we use another set of constants, 

q ( n )  
h”,(j - l)! 

so that 

Actual order choice is not based on maximizing h, but on 
requiring (roughly) that the Ilh j y ( j )  I I be monotonically 
decreasing for j near k .  Estimate hiy?) as jaj(n)g5j(n). 
This helps indirectly with BDF stability limit problem. 
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(a) Actions 

Set order k 

before passing the Local Error Test. 

test quantities : 

ELTEk = E k  = ak+l(n>ll&k+l(n)ll 

Set order k - 1 test quantities (if k > I): 

Set order k - 2 test quantities (if' k > 2): 

Set the new order to: 

ki  = k - 1 if k > 2 & rnax(T,+T,+2) 5 Tk or 
k 2 8~ Ti 5 T2/2 

ki  = k otherwise . 

Then do the Local Error Test. 
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Actions if Local Error Test fails: 

Restore {q&}[ and {$j}f to step n - 1 values 

Set k = k' 

Set r = h'/h according to asymptotic hk+' behavior 
of LTE, but use fixed-step LTE estimates, with sa'fety 
factors: 

1 

r = 0 . 9 / ( 2 E k ) m  7 

adjusted so that 25 - < r - < .9 
0 On second failure, set r = .25 

0 On third and later failures, set k = 1, r = 25 

Set h +- hf = rh 

Retry step at order k ,  step size h 

0 Give up after 10 error test failures 
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(b) Actions after passing the Local Error Test. 

No further action if: k’ = k - 1, or k = 5, or k was raised 
in previous step. If last k + 1 steps were at constant order 
k < 5 and step size h, consider order k + 1. 

Set order k + 1 test quantities: 

Case k = 1: Set k + 2 if T2 < T1/2. 

Case k > 1: 

Set k + k - 1 if T k - 1  < r n i n ( T k , T k + l }  ; 

Else set k + k + 1 if T:+1 < T: ; 

Else leave k unchanged ( T k - 1  > Tk 5 T k + 1 )  . 

In any case, set tentative step ratio 
1 

r = h’/h = 1/(2E:)1;+1 

using new k and corresponding estimated LTE Ek. 
To increase h,  we must be able to  double i-t: 

If r > - 2, take h’ = 2h ; 

If r - < 1, adjust to  make .5 - < r < - .9, set h’ = rh ; 

If 1 < r < 2, set h’ = h . 
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8. Inequality Constraints 

IDA user can impose constraints on y cornponentwise, by 
way of an input vector with 5 choices: 

yi > 0, 92 > - 0, yi - < 0, yz < 0, yi unconstrained. 

Following the Newton iteration, if otherwise successful, 
we test resulting y = yn(m) for satisfaction of constra'ints. 
Test returns mask vector M (MZ = 0 if OK, 1 if not OK). 

If there are any failures, compute a constraint violaftion 
vector V, such that ~2 = yZ-Vz would pass the constraint 
test: hut  just barely. ( Vz = 0 where Mi = 0.) 

E.g., if constraint is yz - > 0, but yz < 0, then VZ = yz. 

If constraint is yz > 0, but yz - < 0, then VZ = yz - 0 . 2 ~ 2 ,  
where w is the vector of error weights, 

wz = rtol lyzl + atolz . 

V is set similarly for constraints yz - < o , yz < o . 

Since the Newton convergence test is 

/lerror in yn(m))( 5 0.33 , 
we accept y = y - V instead of y if (JVI( - < 0.33. 
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Actions if IlVll > 0.33: 

We declare a convergence failure of the Newton iteration. 
and cut the step size. Ratllier than cut by an arbitrary 
factor like 1/4, we estimate a new h’, based on the failure: 

constraint is yi > - 0, but yz < o (arid ykv1 2 u), then 
a linear approximation of yZ(t) crosses zero at tn-1 + h‘, 
given by L 

%-I 

i 

Yn-1 

Yn-1 - 2  

i - yz t Tq 
= r .  h‘lh = 

I I 
t - I  

n V ‘  
J 

The same is true if the constraint is y2 - < 0, but yi > 0. 

So a new step size valid for all components is given by 

To cover the strict inequality case, we apply a safety factor 
of 0.9 to r .  

If r = 0, because some yk-l = 0 but yi  has the wrong 
sign, we can only hope that some small value of h’ will 
produce a valid yz. Therefore, we restrict r to r - > 0.1. 

In any case, we set h t- rh, and try the step again. As 
before, give up after 10 such failures. 
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Inequalitv d constraints in IC Calculation: 

The linesearch process finds a corrected d u e  of the vector 
x: (= a mix of y and y’ components) between current x 
and x + Ax. 

Before setting X by the unconstrained algorithm, we test 
the y components of x + Ax for satisfaction of the con- 
straints. If not satisfied, we compute so that x + XOAx 
will (just barely) satisfy the constraints. 

Then restrict the subsequent X choice to 0 < X < - Xo. 
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